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Abstract - Many applications running in cloud computing enuimeent are workflow applications which cont:
large number of precedence specific tasks andgoresproper schedule in order to complete sucattgsEfficient
scheduling of workflow applications is a challergitask. In workflows, the uncertainties like ‘untzén dats
transfer time’ among dependent tasks and the wainetask execution time, if ignored may lead to dliee
violation. The proposed TOF Workdw schedulingalgorithms so far unconcerned these uncertainfies. paper
presents an improved untainty aware TOF Work Flow Schedul algorithm abbreviated a-TOF that considers
the uncertainties of scheduling workflows such tees tincertain running time of tasks in distributedieonment
when focused upon gave the superior outcome in afagost and resource utilization, for DAG when canga
with the original algorttm. The compared task scheduling algorithms ardeimgnted in Workflowsin

Keywords - SchedulingTasks, Uncertainties, Workflc

I.INTRODUCTION

Fields like biology, chemistry, physics, financeathematics etc come under scientific computing sarg@he
scientific applications are required to be run tynend speedily [2]. Scientific applications proéua number @
workflow tasks. Such tasks which are related (saphlications are called workflow applications) haweebe
appropriately sorted. In genéra DAG (Dynamic acyclic graphs) is used to represent &fiaw. Figure 1 show.

the example of a DAG.
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Fig. 1 An example of DAG

TOF Work Flow Schedulingneans planning thallocation of workflow tasks to virtual machinessbd on the
scheduling algorithm§3]. Other than makespan being the primary objecfor effectiveness in scheduling, ¢
factor also matters in mutual benefit of both tisers and the cloud provideThis paper compares the uncertai
aware algorithm with traditional algorithm on thasis of cost. All these factors only matter whepaaticular
workflow completes on time. So the purpose of thgo@hm presented here, is to complete the subeseh
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dependent tasks on time along with optimizing tbetcThe broker or scheduler decides the virtuathimes to
which the tasks are to be allocated on the basispetified QOS constraints like deadline and cdke task
scheduling in such applications is a complex pres@sce the processing of all the tasks dependseoautput data
of their predecessor tasks. There are many hisfosipproaches in workflow scheduling. Their onetfed most
prominent weakness is that they all assumed thattabks running time and data transfer time arekposvn.
However, in actual cloud systems the execution tifnthe tasks in any workflow cannot be predeteedirin this
paper we compare the investigated Improved Unceytahware Online TOF Work Flow Scheduling Algorithm

abbreviated as i- TOF with the original TOF andaaitional algorithm FCFS.
II.MOTIVATION

The uncertain factors in dependent tasks’ schegulime ‘uncertain task execution time’, the ‘unaartdata
transfer time’ among tasks and the ‘sudden arrivhfiew workflows may result in non optimized akion. Hence
these uncertainties result in over utilization esaurces which can in turn increase the users’resqe<eeping too
short time for tasks may not be right, as the dotxacution time may be longer, it can vary acaogdio the
network bandwidth(to transfer data among taskgjusr to different capabilities of virtual machinesdistributed
environment. This further can postpone the waitiagks and the successor tasks and in turn resweadline
invasion. Whereas, reserving large amount of tiowerhay be inappropriate since its real running tmay be too
less based on resources availability. Hence, rgntime of jobs and data transfer time among thé&stase
‘uncertainties’. To solve the above problem, thé guoblems are formulated in investigated paper:hdw to
diminish these uncertainties to give baseline salasd (2) how to diminish the free time slots of thstances to
reduce renting costs, while meeting deadlines. gaper ahead is in the sequence: Section 2 is dedita Related
Work. Section 3 gives the proposed methodologyti@eel explains the implementation and experimergaults.
As such experimental settings are introduced arniimeance results of algorithms are analyzed. Rinal Section

5 paper is concluded with future work.
I11.RELATED WORK

We start our analyses by the traditional algorith@FS. First Come First Serve (FCFS) algorithm igallg
considered for parallel processing. It selectsitiséances having least waiting tasks. The disadggnbf FCFS is
that it is non- preemptive. In non-preemptive sehieg the processing of tasks occurs accordindnéir incoming
order. The tasks having long makespan may finishrbeshorter tasks [4].Min-Min algorithm arrangé® ttasks
according to their length. The shorter length taalesfirst given to the machines having least etquecompletion
time. Drawback of this procedure is that it choosesll tasks to be executed firstly, this in tuatags the longer
tasks [5]. Max-Min algorithm is like Min-Min, but arranges the tasks according in descending ofdéeir length.
Drawback of the algorithm is that it firstly chosskarge tasks to be executed, this in turn delagsshorter tasks.
Both max-min and min-min keep updating the avadatiine of machine, i.e. suppose task 1 takes 80nskscto
complete , the execution time of next tasks areetgul to be 80 seconds [6].Priority scheduling rétligm considers
the priority of jobs for scheduling. It is based wnltiple criteria decision making model. The lgftthe jobs is
sorted on basis of priority. The task with greagsbrity is chosen and it assigns it to resoufw has minimum
expected completion time. Drawback of the algoritlomu priority processes may wait long time [7].RduRobin
algorithm applies the time slicing technique toestiile the tasks. Each task is given a pre- dedidedslice. After
it operates for specified time slot, the next wajttask on that particular instance is allocatedntiemory, CPU and
storage of that instance, again for that fixed tisiw [8]. The next subsection tells about the utadety- aware
architecture to execute workflows in cloud serndogironment.

There has been rapid research in workflow scheduliime latest research in the field includes loswécessful
algorithms described ahead. Lagrange relaxatiomeg@gged cost algorithm [20] found out schedulingisien
arrangement of every task to reduce the utilizatibpower on the mobile while focusing on meetirepdline.
Design of this TOF Work Flow Scheduling algorithaved energy utilization when differentiated to loegecution
and came out to be more optimal than remote exatuti terms of flexibility. Numerous workflow desigd
applications are stored in cloud. The proposedrifgo [21] Extended dynamic constraint algorithnddeon of
multiple choice knapsack problem- MCKP) was comgavéth prevailing scheduling algorithm - Extended
Dynamic Constraint Algorithm (EDCA). It guarantedttat monetary cost is optimized along with secund a
reliable operation. It reduced 25% failures whiémgrating the cheapest solutions among three tigusi

Resource allocation for TOF Work Flow Schedulinggafs persists as a problem. Next is the study d\eel
hybrid algorithm CR-AC. It came on combining theenfical reaction optimization and ant colony optiatian
algorithms which were proposed [22] to optimize Warkflow scheduling. When compared with traditib@&RO,
ACO and recent PSO and CEGA, it is observed trantw algorithm gives finer results in terms of esgan and
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cost of planning the schedule of three workflows,aonumber of machines. It achieves a high-standptitnal
schedule with negligible cost meeting the deadtiorstraint. Outperforms given algorithms in alleagdifferent
tasks on different no of VMs). TOF Work Flow Schig is a main issue in cloud computing, executidrinter
dependent tasks take place along with considerimgity of Service (QOS) requirements. Quality ofiee (QOS)
aware TOF Work Flow Scheduling algorithm [23] comgzh 20-30 of heuristic, meta-heuristic, and hybrid
algorithms with their numerous QOS constraintsvds concluded that most algorithms took makespdrcast as
the reduction motives, so future work in TOF Wotkw Scheduling must consider fault tolerance alwiitfy load
balancing, workflows security as well as protectidrtioud recourses. There are many TOF Work FloheSuling
algorithms designed, neither of which considereceaainties associated with workflows. The uncer&iecution
time on a machine, and the random uncertain aro¥akorkflows resulted in the coming of uncertairgware
Online Scheduling Algorithm [1] abbreviated as T@Eing aware of uncertainties, this algorithm ojities service
renting cost, resource utilization, schedule déwiaand resource utilization fairness.

IV. PROPOSED METHODOL OGY

A. Service Instance Modelling:

Differently parameterised service instances areigea in cloud platform [9], [10], [11]. Let us uske symbol
suk as the type u of k- th service instance; m tenthe number of obtainable service types, u:,{1,t} refers
service type index. Distinct types of service ins&s in {1,2,....,m} refer to different configuratiorand prices.
Price (u) symbolize for cost of service type ‘u’dathe configurations like CPU, memory sizes andwvoet
bandwidth vary. The instances in cloud platform pieed by integer time units. The instances camefased at
any point of time [12]. In this paper, it is suppdsthat the service instances will only be reledé¢dey have
processed the entire allocated task and transfeofidata.

B. System Model and Architecture:

To diminish the effect of uncertainties introducdkde explored approach, the uncertainty aware lgor
develops a novel architecture for executing wonkfloin cloud service environment depicted in FigdreThe
service platform can be split into three componeids, cloud clients, a stock of instances andteduler. The
buyers can give in the complex applications todloeid platform no matter when. The cloud platforimsn supply
a pool of service instances which can be increasedduced in number on the basis of demand, dyaiwni The
scheduler acts as the mediator which maps the imgptasks from user area to service instances densg the
predefined objectives and meeting the constrapesiied in applications and by platform providers.
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Fig. 2 The uncertainty -Awar e Scheduling Architecture
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The scheduling strategy in this work of the schedis as follows. The units of scheduler are: tpskl (TP),
workflows schedulability analyzer, task allocatioantroller, and instance adjustment controller. Task pool
contains the waiting workflow tasks, these waititagks are allocated to service instances by schiiity
analyzer, it also makes the plan for service irstaradjustment. This plan consists of when to leaseinstances
of distinct types, and the execution of this plardone by adjustment controller. Furthermore, #sk controller
performs the foremost responsibility of allocatithg tasks to selected service instances accorditiget specified
plan. The next sub-section tells the algorithrmtplement this procedure.
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C. Algorithm Description:

For the above depicted scheduling architecturejrtipdemented working process can be explained lioviing
way-

«  When new workflows enter, the ranking of taskshis prime step in this algorithm. Then, immediataly the
ready tasks are given to the machines as runnsig tar the waiting tasks. If the ready for useanses are
deficient, then new service instances are reledaathermore, the remaining tasks, non-ready taskglaced
in the task pool.

» Case two can be the second uncertainty consideeedyhen the workflow arrives even when the maekiare
busy. As soon as this task is completed, the vgpitisk on that instance is executed provided,aH érom its
predecessor task is received. Furthermore, theessoc tasks of the completed task become readiheSmext
appropriate action is to allocate these tasksat@teady to the instances instantly. In the samg ifithe ready
for use service instances are deficient, then revice instances are released.

The interesting feature of this setup is that dhiyready tasks can be mapped or can wait directihe service
instances, and the waiting tasks are kept in thk p@ol.In order to bring the above strategy intstence, these
rules are followed.

* Rule 1. Only one workflow task can run on a servictance at a time.

* Rule 2. Tasks waiting on the service instance caras soon as they receive the data from theireoessor

tasks.

* Rule 3. Only when the tasks allocated and the watesfer for all the dependent tasks executed fmaehine

are fully completed, then only the instances azedr

Figures 3 and 4 diagrammatically explains the psedoapproach through flowchart. With contrast te th

traditional scheduling schemes [9], [12], [13],tbe arrival of new workflows (in Figure 3), the kimg of tasks is

the prime step in this algorithm. Then, immediately the ready tasks are allocated to the machasesxecuting
tasks or the waiting tasks and all the waiting $aake placed in the task pool. See Figure 3 andr&ig for
understanding this process diagrammatically. ThHeerotase, in Figure 4, is when an instance conwplate
workflow task. As soon as this task is completd, waiting task on that instance is executed pemjicll data
from its predecessor task is received. Furtherntbeesuccessor tasks of the completed task beceady and are
sorted according to their p|stThen, all these ready tasks are allocated toicgelimstances instantly and are
removed from the task pool. The mapping is dondumgtion mapReadyTask() guaranteeing that the predii
finish time (i.e., plff) of the workflow task is lower than its deadlirféor the better optimization of cost and
resource utilization, when the second uncertaistipoked upon, on the sudden completion of reaslgstaf the
machines do not have any waiting tasks, they aabtiéd. The figure 4 shows this that on searctongther tasks
to execute, if there are no waiting tasks, plusnidne workflow tasks are’nt ready too, the senvitsance is turned
off using the function optimizeVm(). Now in the riesection we’'ll see through experiments how alfanitgives us
considerable performance.

D. Experimental Setup:

The software used for the experiments is Eclipsa leon and WorkflowSim1.0. The configuration
of the system used are 64-bit Windows 10 OS, IRdelCore(TM) i5 CPU 2.20 GHz, 8GB RAM. The
proposed algorithm is developed in Java languagen™Workflow Sim simulator is employed to check the
developed algorithm. It offers workflow level suppduring the simulation. WorkflowSim is that theotkit
used for simulation of scheduling algorithms. e advanced version of CloudSim by offering better
workflow management and accurate evaluation. Cloud$4] is employed for simulation of cloud service
and infrastructure. CloudSim allows executing osingle workload. It doesn't consider failures and
overheads. It doesn't support clustering and jgdeddéencies. Unlike other simulators, failures averloeads
occurred within the heterogeneous system are ceregidnto the WorkflowSim. It also supports clustgr
Figure 5 shows the WorkflowSim Architecture. WodkfiSim contains multiple layers like Failure monjtor
Failure generator, Clustering engine, Workflow @&egiand Workflow mapper along side the Workflow
scheduler which is present into the CloudSim. Woxkf mapper has used for mapping non-concrete
workflows to the particular workflows which are iggit on execution sites. Data dependencies are gadna
by Workflow engine. Tasks are scheduled to theuess with the assistance of Workflow Scheduleralbm
jobs are combined into an outsized one by usingt€ting engine.
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arrive suddenly

V.RESULT AND DISCUSSION

Fig. 5. Workflowsim Ar chitecture

To test the proposed algorithm, following configuration of virtual machines are used(shown in below table).

Table-I: Virtual Machines configurations used in simulation.
Service Type
type(u name Price($) F(u)
1 Small 0.023 8
2 Medium| 0.464 4
3 Large 0.0928 2
4 xLarge 0.1856 1

Special Issue on AICTE Sponsored International Conference on
Data Science & Big Data Analytics for Sustainability ICDSBD2020)

© IJRAD. Volume 4, Issue 4, pp. 14-21, October 2020. 18




International Journal of Research and Advanced Development (IJRAD), ISSN: 2581-4451

For experimenting, these four scientific workfloppdications are used: Montage (used in astrono@yber Shake
(used in earthquake science), SIPHT (used in hliomdtics), LIGO Inspiral (used in researching giaional

physics) [16]. For each workflow class, the struetaf the workflow is shown in Table 2, which ikea from the
Pegasus Workflow repository [17]. It gives the dgdion of the four applications which will be usedexperiment
in the next chapter.

Table-lll: Service renting costs for different wlidw algorithms at different deadline base

Deadline base I-TOF TOF FCFS
2 1600 1780 2500
4 1400 1787 2520
6 1453 1726 2550
8 1339.78 1710 2573
10 1100 1780.7 2571

E. Service renting cost evaluation

The first experimental result's administered by paring the proposed i- TOF with TOF [1] and a stadd
algorithm FCFS fluctuating the parameter deadliasebto think about the service renting cost coimstriable 4
shows the service renting costs that are readffaetetit deadline base for the three algorithms.siéen in figure 7
that the service renting cost of all the algorithaeerease slowly with increasing deadline baseratienale being
that, as we increase the deadline, the schedwdarsisfor the cheaper machines since it's got lotige to execute
an equivalent task. it's clearly visible that tHBOF algorithm outperforms the opposite two aldoris and provides
the reduced cost. While resource overprovisiongng @st users quite necessary, resource undeismoivig hurts
the appliance performance. the value effectiveésdoud computing highly depends on how well thustomer
can optimize the value of renting resources (VMshT cloud providers. the difficulty of resource pisioning
optimization from cloud-consumer potential may becenplicated optimization issue, which incorporatesch
uncertainty parameters. there's a way researchuaverailable for solving this problem because Wwiihin the real-
world. Here, during this paper we offer details atbwarious optimization techniques for resourcevjsioning.
Reserved instances are cheapest resources. Ppielisated on the amount of subscription (sta@tjstomer must
reserve the resources beforehand. Customer migdrpay for the resources reserved if he/she doesetthem
extensively and he might under buy the resourcssrved for while [6]. On-demand instances are thg best
priced resources. Price is about by the serviceigeo and remains constant. Consumer has got toppayse.
Customer is conscious of the precise price to lid pesources are reserved for the customer fopaiet period of
your time [7]. Service provider might reserve tlesaurces for extended than the customer’s utiliSztvice
provider cannot raise the worth when demand is;hidten demand is low, the user pays above the madtee.
Spot Instances [8] allow you to specify the utmustirly price that you simply are willing to pay tion a specific
instance type, usually less than the On-Demand Téese are suitable for both customers and theréifie service
provider because the worth is about consistent with extent of supply and demand. Less scalabilithigh
demand within the market than fixed pricing, thetdpstances are the unused on-demand instancescash price
fluctuates supported supply and demand for insgrmg customers will never pay quite the utmogtepthey need
specified. If the cash price moves above a custemesiximum price, the customer’s instance are gtinige pack
up by the cloud provider [9]. Figure 1 shows thpeieing models.

The second experimental result is carried out bmparing the proposed i-TOF, TOF and algorithm FG&S
optimize the considered QOS constraint- servicémgrtost constraint. The i-TOF algorithm outpenfisrthan TOF
as it gives the reduced cost with different typesagentific applications having same number ok$§$00). Table 4
shows what the service renting costs come for miffeworkflow applications using all three schedglalgorithms.
Figure 8 shows the clear comparison. It is clesglgn that the i- TOF outperforms all the other rétlgm and gives
least service renting costs and the FCFS giveshbigtost
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Fig. 7. Comparison of algorithms by single wor kflow application with increasing deadline base.

TabledV: Service renting costs for different workfli algorithms at different deadline bi

Deadline Bas i-TOF TOF FCFS
2 1600 1780 2500
4 1400 1787 2520
6 1453 1726 2550
8 1339.78 1710 2573
10 1100 1780.7 2571

F. Resource Utilization evaluation

The third experimental result is carried out by panng the proposec-TOF with TOF[1] and a traditioni
algorithm FCFS fluctuating the parameter deadlinsebto consider the second constraint of resouitization
constraint. It is seen &l the resource utilization of all the algorithmslividually increase slowly with increasi
deadline base. The reason being that, when thdideasl early, the scheduler maps the task to ahmachaving
high processing speed and when the deadlirmore, the slower machines too get the tasks. Taljéves the
resource utilization readings in simulation clousing different scheduling algorithms on deployingsiagle
application. Looking comparatively, it is clearlisile in figure 9 that the-TOF algorithm gives higher resour
utilization than the other two algorithr

TableV: Service renting costs for different workflow alithms at different deadline ba

Deadlin¢ base i-TOF TOF Fcfs
2 0.6291 0.5231 0.34
4 0.698 0.5322 0.378
6 0.7231 0.6487 0.432
8 0.778 0.6772 0.491
10 0.891 0.7623 0.541

VI. CONCLUSION AND FUTURE WORK

This study strives to propose a better uncertaavtpre TOF Work Flow Scheduling algorithm concerning
service renting cost and resource utilization bysidering the uncertainties in cloud service envinent.
Experimental results convey that the roached architecture for cloud service platformgperforms all the othe
algorithms. In the context of realerkflow traces, three experiments were carriedtoyirove the superiority of tt
proposed algorithm. To be precise, th-TOF performs approriately 50% and 30% better in terms of ser
renting cost and resource utilization respectivelsesently, cloud service is chanced to have proldéresource
failure [18], [19]. The expensive commodities mained by cloud providers need to be prced for their
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effectiveness in case a failure occurs. Hencerdbearch can be further carried out consideringauk tolerance
and robustness in scheduling workflows considettigge uncertainties.
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